JVMS System Requirements

Version 1.0
The A-Team

Garrett Wampole

Ben Litchfield

Jason Offord

Jason Gilman

David Bryant

Table of Contents

4Document History

Product Purpose
5
Problem Statement
5
Product Goals
5
Client, Customer and other Stakeholders
6
Client Definition
6
Mr. Charles Linn
6
Customer Definition
6
Harris Corporation
6
Other Stakeholders
6
Rochester Institute of Technology
6
The A-Team
6
Product End Users
7
JTRS Designer
7
User Category
7
Work Tasks
7
Subject Matter Experience
7
Technological Experience
7
Requirements Constraints
8
Solution Constraints
8
Implementation Environment
8
Development Schedule
8
Financial Budget
9
Naming Conventions and Definitions
10
Use Cases
11
Requirements
39
Components
39
Functional Requirements
39
Non-Functional Requirements
44
Applications
47
Functional Requirements
47
Non-Functional Requirements
50
Device Configuration
51
Functional Requirements
51
Non-Functional Requirements
54
Projects
55
Functional Requirements
55
Non-Functional Requirements
57
Technical Constraints
58
Non-Functional Requirements
58
Validation
60
Functional Requirements
60
Non-Functional Requirements
61
Views
62
Functional Requirements
62
Non-Functional Requirements
62
XML Serialization
65
Functional Requirements
65
Non-Functional Requirements
66
Tasks
69
Risks
69
User Documentation
69

Document History

	Version
	Date
	Comments

	0.1
	1/09/2003
	Created Document

	0.2
	1/10/2003
	Added definitions, schedule, etc.

	0.3
	1/11/2003
	Minor Revisions

	0.4
	1/12/2003
	Revisions from A-Team inspection

	0.5

	1/18/2003
	Revisions from 1/16 client inspection

	1.0
	1/20/2003
	Accepted Version – Phase 1

Product Purpose

Problem Statement

A US government initiative called the Joint Tactical Radio System (JTRS) is currently causing a major paradigm change in how government radio systems are being designed. Although such radios have extensively employed software in the past, the JTRS system moves these platforms to the concept of a “Software Defined radio”, where communications waveforms are installed on a standard platform much like applications are installed on a PC. The applications themselves consist of a collection of CORBA components and other libraries, and are launched by a generic application manager. The application manager’s “scripts”, which describe which components to launch, what processors to launch the components onto, and how to interconnect the components, etc. are specified in eXtensible Markup Language (XML). Harris Corporation wants to implement a CAD-like modeling system which will allow these software applications to be defined graphically and exported to XML files that will be loaded onto the radio.

Product Goals

The product shall provide a consistent graphical means of creating, configuring, and validating software applications. It shall also provide a means of exporting these configurations to XML files.

Client, Customer and other Stakeholders

Client Definition

Mr. Charles Linn
Mr. Linn is the primary contact point with Harris Corporation.

Customer Definition

Harris Corporation

Harris Corporation is the project sponsor and will use the end product.

Other Stakeholders

Rochester Institute of Technology

Software Engineering Department faculty of the Rochester Institute of Technology will advise the development and process management of the product.

The A-Team

The A-Team is responsible for development and holds academic interests in the success of the project.

Product End Users

JTRS Designer

User Category

People responsible for creating JTRS configurations.
Work Tasks

Designing and managing JTRS configurations.
Responsible for deploying configurations on JTRS radios.
Subject Matter Experience

Advanced understanding of the SCA.
Technological Experience

Familiarity with CAD-like systems.
Requirements Constraints

Solution Constraints

· The application shall provide a graphical representation of components whose properties and dependencies may be modified.

· The application shall export valid XML, which conforms to version 2.2 of the Software Communications Architecture.

· The application shall be responsive to user actions.

· The application shall provide the ability to complete a model in several stages, and to generate XML for a model in various stages of completion.

Implementation Environment

· The application shall run on a standard PC under Windows 2000.

· The application shall be free of “run-time” license fees, for example from third party software.

Development Schedule

· Week 1: Training and Problem Domain

Includes team training, initial questions, and problem domain orientation.

· Week 2: Project Planning

Project planning includes defining the process, scope elicitation, and negotiation of specific milestones.

· Week 2 – 5: Requirements Elicitation

The activities of these weeks will include both in-person and phone interviews to gather requirements for the product. The software requirements specification document will be delivered at the end of this period.

· Week 6 – 9: Design

Requirements elicitation will continue throughout this phase, but the primary focus will shift to design development. The deliverable at the end of this stage is the design document.

· Week 9: Interim Review and Prototype Demonstration

The week 10 milestones will include a review of the design and a demonstration of the prototype.

· Week 11-19: Implementation and Testing

Implementation of the product will commence from week 11 through week 19. Testing will parallel the development effort in accordance with the test plan.

· Week 20: Final Delivery and Final Report

The termination of the application development will be week 20. This will be accompanied by a final deliverable, which will be submitted to Mr. Linn and Harris Corporation, and a final report which will be submitted to both Mr. Linn and the Software Engineering Department project advisors.

Financial Budget

There is no financial budget for the project due to its academic nature.

Naming Conventions and Definitions

	Name
	Definition

	Appendix D
	SCA Specification - Domain Profile

	Application
	A collection of components and connections

	Application Assembly View
	A graphical display of the assembled applications which will be installed on the radio.

	Application Component View
	A graphical display which contains the static view of CF resources.

	CF
	Core Framework

	CORBA
	Common Object Request Broker Architecture

	DCD
	Device Configuration Descriptor

	Device Configuration
	Describes the execution environment and hardware components of a JTRS radio

	Domain Manager
	Applications are registered with the domain manager, which can instantiate those applications.

	Domain Profile
	A collection of XML files which describe the applications that are available and how to start, initialize, and maintain them.

	DPD
	Device Package Descriptor

	JTRS
	Joint Tactical Radio System

	JVMS
	JTRS Visual Modeling Studio

	Non-SCA Component
	A component which does not use any SCA interfaces.

	Platform Assembly View
	A graphical display of the collective function of the hardware environment.

	Platform Component View
	A graphical display which contains the static view of the hardware components that exist in the project.

	Project
	A JVMS workspace which contains various views of the components in a JTRS configuration.

	SAD
	Software Application Descriptor

	SCA
	Software Communications Architecture

	SCA Component
	A component which has an associated CORBA interface.

	SCD
	Software Component Description

	SDR
	Software Defined Radio

	SPD
	Software Package Descriptor

Use Cases

	UC 1

	Name

	Create a new project

	Description

	Creates a new, empty project.

	Priority

	High

	Preconditions

	None

	Primary scenario

	1. The designer directs the system to create a new project.

2. The system prompts for information about the project.

3. The designer enters information and indicates that the information is acceptable.

4. The system creates a new project with the given information.

	Post conditions

	A new project has been created.

	Alternate sequence of steps

	Project has not been saved
3a. The designer confirms that a new project should be created.

(Continue primary scenario at 3)

3b. The designer indicates that the new project request should be canceled.

4a. The system takes no action.

	Comments, issues, and design notes

	Project information includes: Project name, Project directory, Company name, Author

Components are not shared between projects.

A project can consist of multiple applications.

	UC 2

	Name

	Save a project

	Description

	The current project’s representation is saved to the disk for later use.

	Priority

	High

	Preconditions

	A project has been created or loaded via UC 3.

	Primary scenario

	1. The designer directs the system to save the project.

2. The system saves the state of the project to the project directory.

	Post conditions

	The project has been saved to the project directory.

	Alternate sequence of steps

	Saving to an alternate directory
2a. The system prompts for a directory.

3a. The system saves the project to the desired directory.

Directory has files that may be overwritten
3b. The system prompts for confirmation when overwriting files.

4. The designer indicates to overwrite the files.

5. The system saves the project, overwriting the files.

4a. The designer indicates to cancel saving the project.

5a. The system takes no action.

	Comments, issues, and design notes

	No project information is saved to the disk until this operation is selected.

Visual markers indicating that elements have been changed since the last save will be cleared after this operation completes.

	UC 3

	Name

	Load a previously saved project

	Description

	Loads the project’s representation. The project’s contents will appear in the same state as it was saved.

	Priority

	High

	Preconditions

	A previously saved project exists.

	Primary scenario

	1. The designer directs the system to load a project.

2. The system prompts for a project directory to load.

3. The designer selects a project directory.

4. The system loads the project contained in the desired directory.

	Post conditions

	The selected project has been loaded.

	Alternate sequence of steps

	Directory does not contain JVMS project
4a. The system displays an error indicating it cannot load the project.

	Comments, issues, and design notes

	A loaded project will appear in the same state as it was saved, such that component placements, component attributes, and project view will appear in the same way as they were set when the project was last saved.

	UC 4

	Name

	Validate a component

	Description

	Validates a component, which exists in a project, against certain criteria.

	Priority

	High

	Preconditions

	A component is available to validate

	Primary scenario

	1. The designer selects a component in the project via UC 8.

2. The designer directs the system to validate the component.

3. The system displays a message indicating that the component is valid.

	Post conditions

	The system has validated the component and displayed the component’s validation status.

	Alternate sequence of steps

	Component does not pass validation
3a. The system displays a message indicating that the component did not pass validation and shows which parts of the component are in error.

	Comments, issues, and design notes

	Criteria for validation are forthcoming.

Some validation is also performed continuously as components are added.

The system shall differentiate between errors, which must be corrected before serialization; and warnings, which do not preclude XML generation.

	UC 5

	Name

	Validate an application or a device configuration

	Description

	Validates an entire application or device configuration that exists in a project against certain criteria.

	Priority

	High

	Preconditions

	An application or device configuration exists in the current project.

The project is in one of the assembly views (Application or Platform).

	Primary scenario

	1. The designer selects the application via UC 8.

2. The designer directs the system to validate the application.

3. The system displays a message indicating that the application and its constituent components are valid.

	Post conditions

	The system has validated the application or device configuration and its constituent components and displays messages to that effect.

	Alternate sequence of steps

	One or more components do not pass validation
3a. The system displays a message indicating that one or more of the components is not valid and shows where errors are present.

	Comments, issues, and design notes

	Criteria for validation are forthcoming.

An application or device configuration is valid if and only if all of its constituent components are valid and its internal state is valid.

The system shall differentiate between errors, which much be corrected before serialization; and warnings, which do not preclude XML generation.

	UC 6

	Name

	Generate XML for a component

	Description

	Generates the corresponding XML for a single component.

	Priority

	High

	Preconditions

	Components exist in the project.

	Primary scenario

	1. The designer selects a component via UC 8.

2. The designer directs the system to generate XML.

3. The system validates the components being generated via UC 4.

4. The system generates JTRS-compliant XML files to the project directory.

	Post conditions

	XML files have been generated in the project directory.

	Alternate sequence of steps

	Directory has files that may be overwritten

5. The system prompts for confirmation when overwriting files.

6. The designer indicates that files may be overwritten.

(Continue primary scenario at 4)

6a. The designer indicates to cancel the operation.

7. The system cancels the operation.

Generating to an alternate directory
2a. The designer indicates to generate XML to a directory other than the project directory.

3a. The system prompts for a directory to generate files to.

4b. The designer selects a directory and indicates to proceed.

5a. The system generates JTRS-compliant XML files to the selected directory.

Generated component is not valid
4a. The system displays a message indicating that the component did not pass validation and shows which parts of the component are in error.

	Comments, issues, and design notes

	

	UC 7

	Name

	Generate XML for an application

	Description

	Generates the corresponding XML for an application

	Priority

	High

	Preconditions

	A valid application exists in the project.

	Primary scenario

	1. The designer selects an application via UC 8.

2. The designer directs the system to generate XML.

3. The system validates the components being generated via UC 5.

4. The system generates JTRS-compliant XML files to the project directory.

	Post conditions

	XML files have been generated in the project directory.

	Alternate sequence of steps

	Directory has files which may be overwritten
5. The system prompts for confirmation when overwriting files.

6. The designer indicates that files may be overwritten.

(Continue primary scenario at 4)

6a. The designer indicates to cancel the operation.

7. The system takes cancels the operation.

Generating to an alternate directory
2a. The designer indicates to generate XML to a directory other than the project directory.

3a. The system prompts for a directory to generate files to.

4b. The designer selects a directory and indicates to proceed.

5a. The system generates JTRS-compliant XML files to the selected directory.

One or more components are not valid
4a. The system displays a message indicating that one or more of the components is not valid.

	Comments, issues, and design notes

	Generating XML for an application implies generation of the application’s constituent components.

	UC 8

	Name

	Generate XML for a device configuration

	Description

	Generates the corresponding XML for a device configuration

	Priority

	High

	Preconditions

	A valid device configuration exists in the project.

	Primary scenario

	1. The designer selects a device configuration via UC 8.

2. The designer directs the system to generate XML.

3. The system validates the components being generated via UC 5.

4. The system generates JTRS-compliant XML files to the project directory.

	Post conditions

	XML files have been generated in the project directory.

	Alternate sequence of steps

	Directory has files which may be overwritten
5. The system prompts for confirmation when overwriting files.

6. The designer indicates that files may be overwritten.

(Continue primary scenario at 4)

6a. The designer indicates to cancel the operation.

7. The system takes cancels the operation.

Generating to an alternate directory
2a. The designer indicates to generate XML to a directory other than the project directory.

3a. The system prompts for a directory to generate files to.

4b. The designer selects a directory and indicates to proceed.

5a. The system generates JTRS-compliant XML files to the selected directory.

One or more components are not valid
4a. The system displays a message indicating that one or more of the components is not valid.

	Comments, issues, and design notes

	Generating XML for a device configuration implies generation of the application’s constituent components.

	UC 9

	Name

	Select a component

	Description

	Selects a component in a project.

	Priority

	High

	Preconditions

	Components exist in the project that can be selected.

	Primary scenario

	1. The designer directs the system to select a component.

2. The system provides visual indication that the component is selected.

	Post conditions

	The desired component has been selected.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	Selected components can include SCA Components, Non-SCA Components, applications, device configurations, and relationships.

	UC 10

	Name

	Import component

	Description

	Import a component which has been created in another project.

	Priority

	Medium

	Preconditions

	A component has been previously exported.

	Primary scenario

	1. The designer directs the system to import a component into the current project.

2. The system prompts for an exported component.
3. The designer selects an exported component.

4. The system imports the desired component to the project.

	Post conditions

	The component has been imported into the current project minus any connections and relationships it had in the original project.

	Alternate sequence of steps

	The designer imports a component with a name that already exists in the project

4a. The system displays an error message and does not import the component.

	Comments, issues, and design notes

	Components that are imported are not shared; they are instead copied into the project.

Component instances are not imported.

	UC 11

	Name

	Add an application

	Description

	Adds an application component to the current project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in the application assembly view.

	Primary scenario

	1. The designer directs the system to add an application.

2. The system adds the application to the project, providing visual indication of this.

	Post conditions

	An application has been added to the project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 12

	Name

	Add a device configuration

	Description

	Adds a device configuration component to the current project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in the platform assembly view.

	Primary scenario

	1. The designer directs the system to add a device configuration.

2. The system adds the device configuration component to the project, providing visual indication of this.

	Post conditions

	A device configuration has been added to the project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 13

	Name

	Add an SCA Component

	Description

	Adds an SCA Component to a project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in one of the component views (Platform or Application).

	Primary scenario

	1. The designer directs the system to add an SCA Component.

2. The system prompts for initial information about the component.

3. The designer indicates when the entered information is acceptable.

4. The system adds the SCA Component to the project.

	Post conditions

	An SCA Component has been added to the project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	Initial information includes component type, and other properties.

SCA components can include CF Resources and CF Devices.

Core Framework Devices are only added to the platform component view.

Core Framework Resources can be added to both the platform component and application component views.

	UC 14

	Name

	Add a Non-SCA Component

	Description

	Adds a Non-SCA Component to a project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in one of the component views (Platform or Application).

	Primary scenario

	1. The designer directs the system to add a Non-SCA Component.

2. The system prompts for initial information about the component.

3. The designer indicates when the entered information is acceptable.

4. The system adds the Non-SCA Component to the project.

	Post conditions

	A Non-SCA component has been added to the current project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 15

	Name

	Delete a component

	Description

	Removes a component from the project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

	Primary scenario

	1. The designer selects a component via UC 8.

2. The designer directs the system to remove the selected component.

3. The system removes the component and all of its instantiations and relationships.

	Post conditions

	The selected component has been removed from the project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 16

	Name

	Edit a component’s attributes

	Description

	Sets the attributes of a component that exists in a project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

A component exists.

	Primary scenario

	1. The designer selects a component via UC 8.

2. The designer edits the value of some attributes and indicates that the information is acceptable.

3. The system sets the changed attributes.

	Post conditions

	The selected component has new attribute values.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 17

	Name

	Create an instantiation of an SCA Component

	Description

	Creates an SCA Component instantiation in the assembly view of a project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in one of the assembly views (Platform or Application).

	Primary scenario

	1. The designer directs the system to create an SCA Component instantiation.

2. The system displays a list of SCA Components that were defined in the component view.

3. The designer selects the desired component.

4. The system creates an instantiation of the component.

	Post conditions

	An SCA Component instantiation has been added to the assembly view.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 18

	Name

	Create an instantiation of a Non-SCA Component

	Description

	Creates a Non-SCA Component instantiation in the assembly view of a project.

	Priority

	High

	Preconditions

	A project has been created or loaded.

The project is in one of the assembly views (Platform or Application).

	Primary scenario

	1. The designer directs the system to create a Non-SCA Component instantiation.

2. The system displays a list of Non-SCA Components that were defined in the component view.

3. The designer selects the desired component.

4. The system creates an instantiation of the component.

	Post conditions

	An SCA Component instantiation has been added to the assembly view.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 19

	Name

	Connect ports

	Description

	Connects two SCA Components together via ports.

	Priority

	High

	Preconditions

	The project has two SCA Components instances.

The project is in one of the assembly views (Platform or Application).

	Primary scenario

	1. The designer directs the system to connect two ports.

2. The system creates a connection between the ports, providing visual indication of this.

	Post conditions

	A port connection has been created

	Alternate sequence of steps

	Ports are not compatible
2a. The system provides visual indication that the ports are not compatible, and will displays a warning.

	Comments, issues, and design notes

	

	UC 20

	Name

	Create a dependency

	Description

	Create a dependency between two SCA Components.

	Priority

	Medium

	Preconditions

	The project has at least two SCA Components.

The project is in one of the component views (Platform or Application).

	Primary scenario

	1. The designer directs the system to create a dependency.

2. The system prompts to select the type of dependency to create.

3. The designer selects the type of dependency.

4. The system prompts to select the components to create the dependency between.

5. The designer selects two components via UC 8.

6. The system creates the dependency.

	Post conditions

	A dependency has been created.

	Alternate sequence of steps

	Components are not compatible for desired relationship
6a. The system displays an error message and does not create a dependency.

	Comments, issues, and design notes

	There are three types of dependencies: ‘softpkgref’, ‘properties’, and ‘deployondevice’.

	UC 21

	Name

	Add a child Core Framework Device

	Description

	Adds a child Device to another Device which exists in a project.

	Priority

	Medium

	Preconditions

	There exists a CF Device in the project such that it is an eligible parent Device.

	Primary scenario

	1. The designer selects the parent device via UC 8.

2. The designer directs the system to add a child device to the selected device.

3. The system prompts to select the child device.

4. The designer selects the child device via UC 8.

5. The system adds the child device to the parent device, providing visual indication of this.

	Post conditions

	The child device has been added to the parent device.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	Parent devices may have multiple children.

Parent devices must be SCA-Components of type CF Device.

	UC 22

	Name

	Associate a component instantiation with a Device Configuration

	Description

	Add a component instantiation to a device configuration in a project.

	Priority

	High

	Preconditions

	A project exists with a device configuration and at least one other component.

The project is in the platform assembly view.

	Primary scenario

	1. The designer selects the device configuration component via UC 8.

2. The designer directs the system to add a component to the device configuration.

3. The system prompts to select the component to add.

4. The designer selects a component to add via UC 8.

5. The system adds the component to the device configuration.

	Post conditions

	The component instantiation has been added to the device configuration.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	The selected device must be an SCA component of type CF Device.

	UC 23

	Name

	Associate a component instantiation with an Application

	Description

	Add a component instantiation to a device configuration in a project.

	Priority

	High

	Preconditions

	A project exists with a device configuration and at least one other component.

The project is in the platform assembly view.

	Primary scenario

	1. The designer selects the device configuration component via UC 8.

2. The designer directs the system to add a component to the device configuration.

3. The system prompts to select the component to add.

4. The designer selects a component to add via UC 8.

5. The system adds the component to the device configuration.

	Post conditions

	The component instantiation has been added to the device configuration.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	The selected device must be an SCA component of type CF Resource.

	UC 24

	Name

	Change the project view

	Description

	Changes the current view of the project to a new view.

	Priority

	High

	Preconditions

	A project has been created or loaded.

	Primary scenario

	1. The designer directs the system to switch the project view.

2. The system changes the project view to the desired view.

	Post conditions

	The project view has been changed

	Alternate sequence of steps

	

	Comments, issues, and design notes

	Project views include: platform component, platform assembly, application component, and application assembly.

	UC 25

	Name

	Zoom in and out

	Description

	Zoom the project area in and out.

	Priority

	Low

	Preconditions

	A project has been created or loaded.

	Primary scenario

	1. The designer directs the system to zoom the project area in or out.

2. The system displays the new view, according to the designer’s choice.

	Post conditions

	The project view has been zoomed in or out.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 26

	Name

	Printing a project

	Description

	Print a representation of the current project.

	Priority

	Low

	Preconditions

	A project has been created or loaded.

	Primary scenario

	1. The designer directs the system to print the project.

2. The system prints a view of the project.

	Post conditions

	The project view has been printed.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 27

	Name

	Copying a Component

	Description

	Copies a component in the project to the clipboard.

	Priority

	Medium

	Preconditions

	A project exists with at least one component.

	Primary scenario

	1. The designer selects the component to be copied via UC 8.

2. The designer directs the system to copy the component.

3. The system copies the selected component to the clipboard.

	Post conditions

	The Component has been copied to the clipboard.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

	UC 28

	Name

	Pasting a Component

	Description

	Pastes a component on the clipboard to the project.

	Priority

	Medium

	Preconditions

	A component has been copied to the clipboard.

	Primary scenario

	1. The designer directs the system to paste the contents of the clipboard.

2. The system adds the component on the clipboard to the project.

	Post conditions

	The previously copied component has been added to the project.

	Alternate sequence of steps

	

	Comments, issues, and design notes

	

Requirements

Projects

Functional Requirements
Requirement: P5
Owner: Ben Litchfield

Type: Functional
Folder: Projects

Priority: High

Summary

The designer shall be able to save a project to the project directory.

Rationale

The project needs to be saved to disk to be able to be loaded later.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

A project must be open first. All components, attributes of those components and display information will be saved to disk.

=======================

Requirement: P6
Owner: Ben Litchfield

Type: Functional
Folder: Projects

Priority: Medium

Summary

The system shall allow a designer to save a project to a directory other than the project directory.

Rationale

The designer needs to be able to copy a project or store it in an alternative location.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: P7
Owner: Ben Litchfield

Type: Functional
Folder: Projects

Priority: High

Summary

The system shall allow the designer to load a previously saved project from disk.

Rationale

The designer needs to be able to use a project that was previously worked on.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

Only valid JVMS project files are allowed to be loaded.

=======================

Requirement: P3
Owner: Ben Litchfield

Type: Functional
Folder: Projects

Priority: High

Summary

The system shall allow the designer to create a new project.

Rationale

Projects are the basis for the entire system

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: P1
Owner: Ben Litchfield

Type: Non-Functional
Folder: Projects

Priority: High

Summary

A project shall have the following attributes: project name, project directory, company name, authors.

Rationale

These attributes will be used to define a project and will be used to prepopulate certain fields on other entities.

Source: The A-Team.

Dependencies:

Conflicts:

Notes

=======================

Requirement: P2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Projects

Priority: Medium

Summary

The project directory attribute of a project shall denote a valid filesystem directory.

Rationale

The application needs a valid directory to write files to.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: P4
Owner: Ben Litchfield

Type: Non-Functional
Folder: Projects

Priority: Medium

Summary

Components shall not be shared between projects.

Rationale

This could potentially be confusing and cause unwanted behaviour

Source: The A-Team

Dependencies: N/A

Conflicts: N/A

Notes

Components are not directly shared between projects, it is possible to export and import a component. Once the component is imported it becomes a copy and modifying it in one project will not affect the other project.

=======================

Validation

Functional Requirements
Requirement: V1
Owner: Ben Litchfield

Type: Functional
Folder: Validation

Priority: High

Summary

The system shall allow a designer to validate a single component.

Rationale

Components may be in an invalid state while working on them.

Source: The A-Team

Dependencies: N/A

Conflicts: N/A

Notes

The designer will be notified if the component is not valid.

=======================

Requirement: V3
Owner: Ben Litchfield

Type: Functional
Folder: Validation

Priority: High

Summary

The system shall allow the designer to validate an application.

Rationale

Validating each component individually may be tedious.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: V4
Owner: Ben Litchfield

Type: Functional
Folder: Validation

Priority: High

Summary

An application is valid if and only if all of is constituent components are valid, and the application itself is valid.

Rationale

A valid application implies that everything that it contains is valid.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

N/A

=======================

Requirement: V5
Owner: Garrett Wampole

Type: Functional
Folder: Validation

Priority: High

Summary

The system shall allow the designer to validate a device configuration.

Rationale

Valid device configurations are required in order to generate XML.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

A device configuration is valid if and only if all of its constituent components are valid, and the device configuration itself is valid.

Non-Functional Requirements

Requirement: V2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Validation

Priority: High

Summary

A valid component shall conform to the corresponding part of the DTD.

Rationale

XML is the final output and we need to write XML that conforms to the DTD.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The DTDs from SCA 2.2 will be used.

=======================

XML Serialization

Functional Requirements
Requirement: X1
Owner: Ben Litchfield

Type: Functional
Folder: XML Serialization

Priority: High

Summary

The system shall allow the designer to serialize a single component to XML.

Rationale

This is the basis for the entire application.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: X2
Owner: Ben Litchfield

Type: Functional
Folder: XML Serialization

Priority: High

Summary

The system shall allow the designer to serialize an entire application to XML.

Rationale

This is the basis for the system.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

This serializes the application and its contents.

=======================

Requirement: X6
Owner: Ben Litchfield

Type: Functional
Folder: XML Serialization

Priority: Medium

Summary

The system shall allow the designer to select the directory where the XML will be serialized to.

Rationale

The designer may want to save the XML to various locations.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: X9
Owner: Garrett Wampole

Type: Functional
Folder: XML Serialization

Priority: High

Summary

The system shall allow the designer to serialize a selected device configuration.

Rationale

This functionality is required to generate valid JTRS XML for the platform.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Non-Functional Requirements

Requirement: X3
Owner: Ben Litchfield

Type: Non-Functional
Folder: XML Serialization

Priority: Medium

Summary

The XML that is serialized shall be well-formed.

Rationale

XML that is not well formed is useless.

Source: The A-Team.

Dependencies:

Conflicts:

Notes

=======================

Requirement: X4
Owner: Ben Litchfield

Type: Non-Functional
Folder: XML Serialization

Priority: High

Summary

The system shall generate XML that conforms to the appropriate DTD.

Rationale

The XML must conform to the DTD interface to be useful.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: X5
Owner: Ben Litchfield

Type: Non-Functional
Folder: XML Serialization

Priority: High

Summary

The system shall generate XML that conforms to all validation requirements.

Rationale

The XML shall adhere to all business rules for JTRS applications.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: X7
Owner: Ben Litchfield

Type: Non-Functional
Folder: XML Serialization

Priority: Medium

Summary

The system shall use the project directory as the default directory when serializing XML.

Rationale

Storing the XML in the project directory is the normal case and would be nice to have the system preselect this for the user.

Source: The A-Team.

Dependencies:

Conflicts:

Notes

=======================

Requirement: X8
Owner: Ben Litchfield

Type: Non-Functional
Folder: XML Serialization

Priority: Low

Summary

The system shall use the last directory used for XML serialization as the default.

Rationale

A designer may want to serialize the XML multiple times and having the system keep track of that directory would be nice.

Source: The A-Team.

Dependencies:

Conflicts:

Notes

=======================

Components

Functional Requirements

Requirement: C2
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: Low

Summary

The system shall allow the designer to import a component from another project.

Rationale

Reusing the work done from another project would make creating new projects easier.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: C1
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: High

Summary

The system shall allow a designer to select a component.

Rationale

Selecting components is needed for many other requirements.

Source: The A-Team

Dependencies: N/A

Conflicts: N/A

Notes

The system will give a visual indication of the selection. This is either a non-SCA component or an SCA component.

=======================

Requirement: C8
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: High

Summary

The system shall allow the designer to add a non-SCA component.

Rationale

Non-SCA components are needed in an application.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: C5
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: High

Summary

The system shall allow the designer to add an SCA component a project.

Rationale

SCA components are needed to make applications and configurations.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

An SCA component can be of the following types:resource, device, resourcefactory, domainmanager, log, filesystem, filemanager, devicemanager, namingservice, eventservice.

=======================

Requirement: C10
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: High

Summary

The system shall allow the designer to connect two ports together.

Rationale

This connection will allow SCA components to interact.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The uses port connections:

usesport.componentinstantiationref

usesport.devicethatloadedthiscomponentref

usesport.deviceusedbythiscomponentref

usesport.findby.domainmanager

usesport.findby.namingservice

The provides port connetions:

providesport.componentinstantiationref

providesport.devicethatloadedthiscomponentref

providesport.deviceusedbythiscomponentref

providesport.findby.domainmanager

providesport.findby.namingservice

componentsupportedinterface.componentinstantiatedref

componentsupportedinterface.findby.domainmanager

componentsupportedinterface.findby.namingservice

findby.domainmanager

findby.namingservice

=======================

Requirement: C11
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: Low

Summary

The system shall allow the designer to delete a component from the project.

Rationale

A component may no longer be needed.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: C12
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: Medium

Summary

The system shall allow the designer to edit the attributes of a component.

Rationale

The designer may want to change values of the attributes of the component.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: C13
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: Medium

Summary

The system shall allow the designer to create a dependency for a component.

Rationale

The component dependencies need to be known to load the JTRS application properly.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

This needs some thought, there are two types of dependencies software and properties.

=======================

Requirement: C14
Owner: Ben Litchfield

Type: Functional
Folder: Components

Priority: High

Summary

The system shall allow the designer to create an instantiation of a component.

Rationale

The instantiated components are needed to draw relationships.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Non-Functional Requirements

Requirement: C3
Owner: Ben Litchfield

Type: Non-Functional
Folder: Components

Priority: Low

Summary

Components that are imported from other projects shall only maintain properties and not relationships to other components.

Rationale

The relationships are application wide and only the component should be imported.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: C4
Owner: Ben Litchfield

Type: Non-Functional
Folder: Components

Priority: Low

Summary

The system shall make a copy of a component which exists in the project.

Rationale

Sharing components between projects may cause unwanted side-effects.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: C6
Owner: Ben Litchfield

Type: Non-Functional
Folder: Components

Priority: High

Summary

An SCA component shall have all of the attributes that are defined in the softpkg.2.2.dtd.

Rationale

These attributes are required in order to create the XML documents.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: C7
Owner: Ben Litchfield

Type: Non-Functional
Folder: Components

Priority: High

Summary

An SCA component shall have all of the attributes that are defined in the softwarecomponent.2.2.dtd file.

Rationale

The fact that the component contains an SCD makes it an SCA component.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: C9
Owner: Ben Litchfield

Type: Non-Functional
Folder: Components

Priority: High

Summary

A non-SCA component shall have all of the attributes that are defined in the softpkg.2.2.dtd.

Rationale

These attributes are needed for XML generation.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

=======================

Applications

Functional Requirements
Requirement: A1
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: High

Summary

The system shall allow the designer to add an application.

Rationale

An application is what contains all the components and the relationships between them

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

An application is defined as an SCA application.

=======================

Requirement: A3
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: High

Summary

The system shall allow the designer to edit the properties of an application.

Rationale

Application properties may need to be set and modified thoughout the lifetime of a project.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: A4
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: Low

Summary

The system shall allow the designer to delete an application form a project.

Rationale

An application may no longer be needed in the current poject.

Source: The A-Team.

Dependencies:

Conflicts:

Notes

=======================

Requirement: A6
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: Low

Summary

The system shall allow the designer to remove a component from an application.

Rationale

A designer may want to change the structure of an application.

Source: The A-Team

Dependencies:

Conflicts:

Notes

=======================

Requirement: A5
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: High

Summary

The system shall allow the designer to add a component to an application.

Rationale

Applications need to have a list of components so XML can be generated.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The component must be a type that is allowed by the DTD.

=======================

Requirement: A8
Owner: Ben Litchfield

Type: Functional
Folder: Applications

Priority: High

Summary

The system shall allow the designer to associate a component instantiation with an application.

Rationale

The application holds the component instantiations.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Non-Functional Requirements

Requirement: A2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Applications

Priority: High

Summary

The system shall display a graphical representation of an application.

Rationale

This will allow a designer to graphically create relationships.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The system will display the application such that it looks different than other displayed components.

=======================

Requirement: A7
Owner: Ben Litchfield

Type: Non-Functional
Folder: Applications

Priority: High

Summary

An application shall have all of the attributes that are described in the softwareassembly.2.2.dtd.

Rationale

In order to generate valid XML the system needs to have inputs for all of the attributes that are defined in the DTD.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Device Configuration

Functional Requirements
Requirement: D1
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: High

Summary

The system shall allow a designer to add a device configuration to a project.

Rationale

The device configuration needs to be available to hold devices.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D3
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: Medium

Summary

The system shall allow the designer to edit the properties of a device configuration.

Rationale

The properties of a device configuration will change over time.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D4
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: Low

Summary

The system shall allow the designer to delete a device configuration from a project.

Rationale

A device configuration is no longer needed.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D5
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: High

Summary

The system shall allow the designer to add a CF device to the device configuration.

Rationale

The purpose of the device configuration is to hold devices.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D6
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: Low

Summary

The system shall allow the designer to remove a CF device from the device configuration.

Rationale

A structure of the device configuration may change.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D8
Owner: Ben Litchfield

Type: Functional
Folder: Device Configuration

Priority: High

Summary

The system shall allow the designer to associate a component with a device configuration.

Rationale

The device config is what holds the instantiations.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Non-Functional Requirements

Requirement: D2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Device Configuration

Priority: Medium

Summary

The system shall display a graphical representation of a device configuration.

Rationale

The designer will need to make graphical relationships.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: D7
Owner: Ben Litchfield

Type: Non-Functional
Folder: Device Configuration

Priority: High

Summary

The device configuration shall have all the attributes that are defined in the deviceconfiguration2.2.dtd.

Rationale

In order to generate XML which conforms to the dtd the system will need to support all of the attributes that are defined in the DTD.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Views

Functional Requirements
Requirement: View6
Owner: Ben Litchfield

Type: Functional
Folder: Views

Priority: High

Summary

The system shall allow the designer to change the view.

Rationale

The designer should be able to see the various views of components in the system.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Non-Functional Requirements

Requirement: View1
Owner: Ben Litchfield

Type: Non-Functional
Folder: Views

Priority: High

Summary

The system shall have the following four views: platform component view, platform assembly view, application component view, application assembly view.

Rationale

The views are needed to separate the different types of entities that need to be defined and modified.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: View2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Views

Priority: High

Summary

The platform component view contains only certain types of elements.

Rationale

The designer should only be able to create certain types of components at the platform level.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The following elements can be added to the platform component view:

properties,

Non-SCA Components

SCA Components of the following type(device, log, filesystem)

=======================

Requirement: View3
Owner: Ben Litchfield

Type: Non-Functional
Folder: Views

Priority: High

Summary

The platform assembly view contains only certain types of elements.

Rationale

The designer should only be able to create certain types of components at the platform level.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The following elements can be added to the platform assembly view:

Device Configuration

Instances of things defined in the component view

=======================

Requirement: View4
Owner: Ben Litchfield

Type: Non-Functional
Folder: Views

Priority: High

Summary

The application component view contains only certain types of elements.

Rationale

The designer should only be able to create certain types of components at the application level.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The following elements can be added to the application component view:

Properties

Non-SCA Components

SCA Components of the following types (resource)

=======================

Requirement: View5
Owner: Ben Litchfield

Type: Non-Functional
Folder: Views

Priority: High

Summary

The application assembly view contains only certain types of elements.

Rationale

The designer should only be able to create certain types of components at the application level.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

The following elements can be added to the application assembly view:

Applications

Instances of things defined in the component view

=======================

Technical Constraints

Non-Functional Requirements
Requirement: TC1
Owner: Ben Litchfield

Type: Non-Functional
Folder: Technical Constraints

Priority: High

Summary

The system shall be able to run on a PC running Microsoft Windows 2000.

Rationale

This is the machine configuration that the designers use.

Source: Charles Linn

Dependencies:

Conflicts:

Notes

=======================

Requirement: TC2
Owner: Ben Litchfield

Type: Non-Functional
Folder: Technical Constraints

Priority: High

Summary

The system shall not require run-time license fees.

Rationale

The system needs to be cost-effective.

Source: Charles Linn

Dependencies: N/A

Conflicts: N/A

Notes

Software that requires a run-time license fee may be approved by Harris.

=======================

Requirement: TC3
Owner: Ben Litchfield

Type: Non-Functional
Folder: Technical Constraints

Priority: High

Summary

The system shall respond to a designer's request within 1 second.

Rationale

"The application shall be 'responsive' enough to not drive the user bonko."

Source: Charles Linn

Dependencies:

Conflicts:

Notes

A 'response' does not necessarily imply completion of the user's request, just that some indication has been given that the request is being processed.

=======================

Requirement: Rule2
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

Duplicate properities must be of the same type.

Rationale

Source: SCA appendix D pg4

Dependencies:

Conflicts:

Notes

=======================

Rules

Functional Requirements
Requirement: Rule1
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

Duplicate properties with same ID are ignored.

Rationale

Source: SCA appendix D pg4

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule3
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

Implementation properties are only used for configuration and creation.

Rationale

Source: SCA appendix D pg4

Dependencies:

Conflicts:

Notes

Implementation properties can't be referenced by SAD componentinstantiation, componentproperties or resourcefactoryproperties.

=======================

Requirement: Rule4
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.propertyfile.localfile.name must be a simple name or a relative path that ends with a simple name.

Rationale

Source: SCA appendix D pg5

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule5
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.descriptor.localfile points to SCD for SCA corba components (none for non-corba components).

Rationale

Source: SCA appendix D pg6

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule6
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.implementation.code.stacksize and priority are unsigned longs

Rationale

Source: SCA appendix D pg8

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule7
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.implementation.code.type is one of the following:

Excutable

KernelModule

SharedLibrary

Driver

Rationale

Source: SCA appendix D pg8

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule8
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.implementation.os.name

There is a set of accepted values.

Rationale

Source: SCA appendix D attachment 2 pg3

Dependencies:

Conflicts:

Notes

Accepted values:

AIX, BSDi, VMS, DigitalUnix, DOS, HPBLS,

HPUX, IRIX, Linix, LynxOS, MacOS, OS/2,

AS/400, MVS, SCO CMW, SCO ODT, Solaris,

SunOS, UnixWare, VxWorks, Win95, WinNT,

pSOS, RTXC

=======================

Requirement: Rule9
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

SPD.softpkg.implementation.processor.name

There is a set of accepted values.

Rationale

Source: SCA appendix D attachment 2 pg3

Dependencies:

Conflicts:

Notes

Accepted values:

x86, mips, alpha, ppc, sparc, 680x0,

vax, AS/400, S/390, ppcG3, ppcG4,

ppcG5, C5x, C6x, ADSP21xx

=======================

Requirement: Rule10
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

DPD.devicepkg.version

has a specific format.

Rationale

Source: SCA appendix D pg14

Dependencies:

Conflicts:

Notes

The format is major and minor version numbers separated by commas (e.g., "1,0,0,0").

=======================

Requirement: Rule11
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

DPD.devicepkg.hwdeviceregistration.version

has a specific format.

Rationale

Source: SCA appendix D pg15

Dependencies:

Conflicts:

Notes

The format is major and minor version numbers separated by commas (e.g., "1,0,0,0").

=======================

Requirement: Rule12
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

DPD.devicepkg.hwdeviceregistration.deviceclass.class is one from a set of accepted values.

Rationale

Source: SCA appendix D pg17

Dependencies:

Conflicts:

Notes

Accepted values are given in SCA section 4.2.2. Examples include:

RF, Power Supply, Modem, etc.

There are "extensions" to the base classes, examples of RF "extensions" include:

Antenna, Exiter, Receiver, etc.

=======================

Requirement: Rule13
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

PD.properties.simple.id is a DCE UUID for an allocation property or a valid XML ID for other properties.

Rationale

Source: SCA appendix D pg20

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule14
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

The type of PD.properties.simple.value must match the PD.properties.simple.type attribute specified.

Rationale

Source: SCA appendix D pg21

Dependencies:

Conflicts:

Notes

=======================

Requirement: Rule15
Owner: Jason Gilman

Type: Functional
Folder: Rules

Priority: Low

Summary

PD.properties.simple.range is not valid when PD.properties.simple.type is "string" or "objref".

Rationale

Source: SCA appendix D pg21

Dependencies:

Conflicts:

Notes

=======================

Tasks
Refer to Section 6 – Milestones of the JVMS Project Plan.
Risks

Refer to Section 4 – Risk Identification of the JVMS Project Plan.
User Documentation

Limited online help will be provided.
1

